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Abstract

.* The determination of optimal rules for sharing risks and

constructing reinsurance treaties has important practical and

theoretical interest. Medolaghi, do Finetti, and Ottaviani

developed the first linear reciprocal reinsurance treaties based

upon minimizing individual and aggregate variance of risk. Borch

then used the economic consept of utility to justify choosing

Pareto-optimal forms of risk exchange; in many cases, this leads

to familiar linear quota-sharing of total pooled losses, or to

stop-loss arrangements. However, this approach does not give a

unique, risk-sharing agreement, and may lead to substantial

fixed side payments. Gerber showed how to constrain a Pareto-

optimal risk exchange to avoid invasion of reserves.

To these ideas, the authors have added the actuarial concept

of long-run fairness to each participant in the risk exchange;

the result is a unique, Pareto-optimal risk pool, with *quota-

sharing-by-layersA of the total losses. There are many interesting

special cases, especially when all individual utility functions

are of exponential form, giving linear quota-sharing-by-layers.

Algorithms and numerical examples are given.
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OPTIMAL RISK EXCHANGES
inminu*mmummiliminmmamm

Hans BUhlmann and William S. Jewell
V

1. Introduction

Insurance companies and other financial risk-bearing entities

may enter into formal risk-sharing agreements for a variety of reasons,

the most important of which is the simultaneous reduction of risk for

all participants. For example, it is well known that two companies

can both reduce the variance of their risk portfolios by agreeing

to cover fixed quotas (B , 1-0) of their pooled losses (and

perhaps making a side payment to keep the pool "on fair terms");

this joint improvement occurs for some interval of values of B

in (0,1) , so the actual quota must be negotiated by other

considerations.

Other corporate objectives, such as market penetration or

financial stability may lead to different, non-linear forms of

exchange, in which extreme, catastrophic losses are reallocated to

the treaty members in different ways to "spread the risk". In fact,

there is no difficulty in including under risk exchanges such

"one-sided" arrangements as a reinsurance treaty, in which one of

the participants brings no risks to the pool, but agrees to take a

portion of the excess losses above some retention limit, in exchange

for a fixed fee. Clearly it would be desirable to develop a theory

which would explain the variety of actual risk-sharing agreements

observed in the real world.

Given that a group of insurance companies has agreed to enter
into a risk pool, this paper explores the general forms of exchange

that result in simultaneous improvement of risk for all parties, under
* the following assumptions:

(1) All companies share the same information about the statistical

nature of the individual, possibly dependent, risks to be shared.

We formalize this by assuming that all companies work with the
same probability distributions of the risks concerned.
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(2) Each company measures the risk of its portofolio by an

individual utility function that is unaffected by the

negotiations, i.e. there is no effort to change attitudes.

(3) The companies may also agree, through mechanisms not

considered here, on certain individual or joint side

conditions, such as limits on losses paid, or on side payments.

In a series of important papers (2], (31, (4], Borch showed

that the use of utility functions leads to the economic concept

of Pareto-optimal risk exchanges, in which the form of the agreements

is determined by the individual utility functions (however not by

the probability distribution!). Solution parameters are still open to

competitive negotiations. In this paper we shall add the assumption

that

(4) all companies wish the exchange to be fair, in the sense that,

according to a commonly accepted premium principle, all companies

agree that, over the long run, no company in the pool should

profit at the expense of the others.

We shall see that adding this insurance concept of fairness will lead

to a unique Pareto optimal risk-sharing agreement. Many familiar

forms of exchanges then follow under special assumptions about utility

functions, volume of business, individual participation constraints,

etc.

It is interesting that so far all authors have tried to arrive

at a specific element within the set of Pareto Optima by game theoretic

considerations (Bcrch [3], Le Maire E1i]). Our paper achieves unicity

by introducing the actuarial concept of fairness.

2. The Model

2.1. General Considerations

Consider n insurance companies, indexed in 1,2, .... n,

each with a risk portfolio characterized by

- a fixed premium income, Ri •  I

- a random loss (possible claims), Si ). 0
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over some comon exposure period. The set of all losses Si

is defined over some probability space 0 with known joint
distribution P(w) of possible outcomes w . Set It- El i and

BS-ES I .

By a risk exchange or risk pool we mean any formal mutual
agreement among the n companies that, operating as an entity

(1) accepts the responsibility for paying for an input
Xi - fi(Sil) from company i , where fi is a fixed but

arbitrary function;

(2) charges company i an output Yi for accepting the input, (2.1)
according to the agreed-upon rule for sharing risks;

(3) Operates on a zero-balance conservation principle
EYi(w - EXi(w) - X(M)

for all outcomes wan .

Since risk pools are intended to redistribute only actual losses

(and possibly the associated premiums), but not the individual
wealth of the company, one would typically include in the

exchange protocol side constraints of the form

Yi >Ai (i 1,2,...,n) (2.2)

where Ai  is a constant (or random variable Ai(w)),
designed to limit negative charges (payouts) to company i

The risk agreements might also include constraints of the

type
Yi4Ai+Bi , (i-1,2,..,n) , (2.3)

deisgned to directly protect the liquidity of the individual

companies. It is clear that we must have Bi >,0 . We shall not
consider pools in which coalition constraints, relating to
subsets of the Y, F are possible. The importance of side
constraints is mentioned by Borch [51, and first incorporated

in an exchange model by Gerber 110).

"If....
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2.2. The Claims Pool; Linear and Quota Exchanges

An important special case is the claims pool in which

companies keep their premiums and share all their losses:

X i aS L Y O , ( - 1,2,...,n) . (2.4)

One possible risk-sharing rule is a linear .exchange, in

which n2 constants ei8 are given, so that

n
Y " , (1 - 1,2,...,n) * (2.5)

To satisfy the clearing condition EY " EXi P we must have

n
£ e (2.6)

so that a feasible linear exchange has only n2 -n free

constants, 04 Oij < I 

If the losses Xi are uncorrelated, it is easy to show

(for n-2 , see E1]) that the variance of all output losses

V(Yi} can be reduced by adjusting the constrained 6j until

a Pareto-optimal frontier is reached at which a variance reduction

for one company must be traded-of against a variance increase for

another. On this frontier, there are only n exchange constants,

Sij = Si I and

Y" OiX P 04 i %41 ; £ei  I . (2.7)

This arrangement is called a quota claims pool; the quotath
fraction 61 , taken by the i company of the total losses S
is often fixed on the basis of "volume" , e.g.,

a -a /T . (2.8)

Note that one could add conservative side payments to (2.5) to

make EYi) - E{X i) without changing the variances of the quota

claims pool. The first models of linear quota pools were developed

by P. Medolaghi, B. de Finetti, and G. Ottaviani; references are

given in [121



2.3. The Business Pool

Another important special case is when companies agree

to share both premiums and claims:

Xi - Si -, i I Yi>- il2..n (2.9)

Notice the lower limit to prevent the redistribution of wealth.

The traditional quota business pool is a linear exchange of

this type, in which

Y i- e (s-10 ; 0 ,4 1 4C1 ; Eei - 1 .(2.10)

Observe that if these quotas are set on the basis of "volume"

(2.8), then the quota claims and quota business pools coincide,

in the sense that the net charge to company i , Y-i Xi '

is the same in both cases.

2.4. The Canonical Risk Exchange (REX)

It is easy to see that if both X i and Yi are changed

by the same (possibly random) amount, the net charges of a risk

pool remain the same. To simplify exposition in the sequel, we

shall subtract out any A i appearing in (2.2) from the

definitions of Xl and Y in (2.1) , giving Xi fi(Srli) -Ai

and Yi>0 . This will also affect any other side conditions,

such as (2.3)

Our canonical definition will then be:

A risk exchange (REX) (X,Y) is a formal rule for changing a

random vector X - (XX 2 ,..#.,X ) into a random vector

] - (YI,0Y21...Yn) so that

(1) EY i - X -x . (2.11a)

(2) Yi 1 0 , (i-1,2,...,n) . (2.11b)

(3) Y i Bi j, (i- 1 2, ...,n) •(2.11 0)

A
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3. The Fair Risk xchange FWAIRREX)

Most insurance business is carried out using a measure of

risk called premium. If Z is any random variable defined on C)

we may define a premium principle for Z as follows:

Premi(Z Z()G(W)dP() . (3.1)

G () )-0 is a loading factor that weighs Z in a predetermined

manner over the possible outcomes. If G is the random variable

with values G(M) , we can also write Premium[Z] - E{ZG.

Typically, E(G) •l for later purposes, we require G> 0 on

the support of Z . Finally, if G- i for all w , then (3.1)

gives the usual fair premium E(Z}

In establishing a risk pool, particularly a mutual agreement

among similar companies, we argue that no company should profit

from any other in the long run, no matter what form of agreement

is mutually best for the outcomes in each exposure period. This

implies that each company, using a commonly accepted premium

principle, would judge that the premium of its input to the

pool should be identical with the premium of the output it

actually pays, in order that the pool is perceived to be equitable

in the long run.

Therefore we define:

A REX (X,Y) is a FAIRREX if it satisfies the fairness condition

Premium(Yi I - Premium[Xi] (3.2)

for each company (i - 1,2,...,n) , using a common premium

principle (3.1) . Note that for all values of 8 the quota

business pool (2.9) is a FAIRREX if Hi is the premium

calculated on a fair premium basis. Unfortunately the linear

form of exchange is not usually optimal in the sense, as described

in the next section.

AL
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4. The Pareto-Optimal Risk Exchange (POREX)

4.1. The Unconstrained Case

In (21, (31, (41, Borch observed that the form of treaty

acceptable to all parties in a REX should depend upon the indi-

vidual attitudes towards risk. Assuming that each company is

rational in ordering its preferences (i.e., satisfies the Bernoulli

hypothesis), then it is well-known that under weak technical

assumptions this implies the existence of a non-decreasing utility

function ui for each company (i- 1,2,...,n) , and the ranking

of risky outcomes according to its expected utility U . For

example, suppose that, prior to joining a REX , company i

held capital wealth W t against a random loss X i . Its prior

expexted utility would be

U E . (4.1)

Posterior to the REX (2.11), its expected utility will be

u, - E(ui(Wi-Yi(XX 2 ,...,X n ))) - (4.2)

and so it will perceive the REX as advantageous for
company i , if U > U

i.

Borch argued that if the companies acted rationally and

cooperatively, they would not agree on a REX (X,Y) if there
existed another REX (XY) such that the expected utility of

at least one company was improved without decreasing the expected

utility of all other participants. This leads naturally to the

idea that the all interesting treaties are Pareto-optimal,

defined as

A REX (XY) is a Pareto-Optimal Risk Exchange if

there is no other REX (X,i) with

E~uiWi_ )} E~u(Wii)}(4.3)

for all i , with strict inequality for at least one i

Since we will be dealing only with non-negative losses,

we can simplify our formulae by changing to disutility functions

vi and expected disutilities Vi , measured about the current

wealth
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vW(x) - -ui(Wi-x) (4.4)
(4.3) then reads E(v 4 EY (  )  . Expected disutility

for company i (which one wants to keep small!) is denoted by Vi •

We shall assume v! > 0 and v! > 0 for all i (risk aversion).

As convenient, we shall make transformations of the form

a + bvi(x) , with b> 0 , which do not affect preference orderings.

Borch observed (2] that Pareto-optimality could be obtained

for every outcome, and therefore, did not depend upon the

distribution of the X, . Working with unconstrained REXs

(i.e. without (2.1ib), he characterized these solutions as follows:

Theorem I REX ( ,X) is an unconstrained POREX if and

only if there exist positive constants k1,k 2, ..., kn for

which

k v (Y1 ) - kIvj(Y1 ) , (i-l,2,...,n) . (4.5)

A proof is given by DuMouchel [81 . Clearly, there are only

n-l effective constants that parametrize the possible POREXs.

It also follows that the POREX treaties Yi = Yi (Xi' X,''..'xn

are scalar functions of the total losses X only. The values

x of X can replace w as the "state of the world", and the

POREX is hence described by the functions yi(x), (i- 1,2,...,n)

POREXs are pools, in which all losses are first merged, and

then divided up. Borch (5] refers to this result as "non olet"

("l'argent n'a pas d'odeur") with reference to the Vespasian

anecdote.

The form of the unconstrained treaties follows easily

from (4.5). For example, if the companies all have utility functions

that are in one of the following classes (and their positive

linear transformations)

e-aix

ui(x)- (x+bi) c (4.6a;

in (x+di)

then the POREX sharing rules are linear in the total losses

(41, [13]

Yi(x) - Bix + Y i , Mi - , - 0 . (4.6b)
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The quota share fractions Bi and the side payments yL are

determined from the individual utility parameters in (4.6a) as

well as the Pareto multipliers from (4.5). Only in the exponential

utility case are the quota-sharing fractions independent of the

ki . and hence the same for all POREXs.

(4.6b) shows a disadvantage of the Borch formulation:

because the side payments must sum to zero, there are some

companies making payments to others even when all losses are zero.

This phenomenon, which one wants to eliminate in certain cases,

leads inuediately to constrained optimization as considered in

the next section.

4.2. The Constrained Case

Gerber [10] was the first to incorporate a non-invasion

side constraint and suggested Yi< X i-I , where the 1 are

given non-negative constraints; this is a special case of our

definition of a REX . Gerber also generalized Borch's theorem

(4.5) to the constrained case; for our formulation (2.11) it takes

the following form:

Therem 2 REX (X,Y) is a constrained POREX if and only

if there exist positive constants kl,k 2 ,...,k n and a

positive random variable A(w) such that for almost all

outcomes w and all companies i -1,2,...,n

kivl(Yi(w)) = A(M) if 0 < Y (w) < Bi(w)

kivl(Yi(w)) >' A(w) if Yi ) - 0 (4.7)

kiv (Y4(W)) 4 A(m) if Y -M Bi M

For en explicit proof, the reader is referred to [7]. Observe that

for a nondegenerate POREX (i.e. when no company receives a

share Y 0 ), there is exactly one vector (kiI*...k

(and its positive multiples) satisfying (4.7).

In the following, we shall always assume Bi(w) - although

the case where the upper bound is effective can be treated by similar

methods. In particular, Theorem 3 can also be proved for an

effective upper bound on the random vector Y - (YY 2,...,Yn.
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4.3. The Shape of a Constrained POREX

Condition (4.7) gives us an easy way to visualize and

compute the shape of the optimal treaties yi(x) . The Pareto

multipliers ki are fixed arbitrarily, and the curves k vl(y)

are plotted simultaneously for y> 0 with the level line -A( ) ,
as shown in Figure I for n- 3 . The indices are renumbered to

give increasing intercepts A, -ki(0)

Now think of A as parametrically increasing from zero.
If X< XI < X2 < X3 , it is clear from (4.7) that all yi must

equal the lower bound zero, and hence the total losses x are

also zero. Increasing X above the first intercept, so that

A A2 <A3  permits k v (yI)- X and y,> 0 , but still

Y2 ' Y3 - 0 ; in other words, the first company takes all the
losses y -x . In the next interval, XI <X 2 A < A 3 ,

kv,(yI) - k2v (y2) - A and both y1  and Y2 are positive,

yl+ y 2 - x , but still Y3 -3 , and so forth. In other words,
by parametrically increasing A , we pass through different

layers of risk-sharing in which first company #1 , then

companies 01 and #2 , etc., participate.

Furthermore, since at each level A the values of the y
are given directly from the curves, we can compute the total

losses x- Eyi by "horizontal addition". The heavy line in
Figure I shows the resulting parametric curve of X versus x

note the layering constants c,-O , c 2 , c3, at which each new
company begins to participate in x

By reading Figure I sideways, we can easily visualize the fractional

participation yi(x)/x at each level A(x) ; Figure 2 then shows
the actual treaties y±(x) versus x , corresponding to Figure 1.

To sumuarize, the constrained Pareto-optimal treaties consist
of layered, non-linear functions determined parametrically as

follows:

(1) Given the Pareto multipliers (ki) and the disutility

functions (vi } , we renumber the companies so that

Ai A2 ( .. 4( An , where akivi(0) . (Take n -+)

(2) If Aj <A Aj+1 , then only companies with indices

iCJ- (1,2,...,j} participate in the losses, so yi(A) > 0(1EJ),

and yi(A) O 0(iiJ), (J- 1,2,...,n) .

A. i



(3) The participations y, and total losses x in layers

(kit XJ+ II are found from the inverse wi of vi

Yj(') - w 1 -i) (iEJ) , 4.8a)

and

x(A) Z yi()) . (4.8b)
itJ

(4) Since v" >0 , this inversion is unique, and the constrained
POREXs are equally characterized by the ordered layering

constants C, M 0 C2 c c3 ( cn with
i-i )i

c- wi(k) (i-2,...,n) . (4.9)

Thus, in principle, the participants in a constrained POREX have to

determine, through bargaining, the n-I constants which determine

the n layers of total pooled loss at which each company will

begin to participate; once these values (and their order) are
determined, the form of participation is uniquely determined by

the individual utility functions. Generally speaking, a first

company takes all the loss in the lowest layer, and successive
companies start in succeding layers, with relative participation

in higher layers usually (but not necessarily!) diminishing.

4.4. The Exponential POREX

Because of simplicity and practical importance, we shall

concentrate on exponential (dis)utilities in our later examples,
for which all companies have ui proportional to -e-x/' i , and,

say,

vi(x) - aIe+x/ca i ; vx) - ex /  . (4.10)

(This normalization makes A - ki .)

This utility function has the great advantage that the form of

the POREX is independent of the initial wealth Wi  (being-
absorbed in the ki or the ci ) ; this is because the exponential

is the only function with constant risk tolerance [13] . ai is the

risk tolerance unit - the larger is a, the more risk-tolerant is

- ----- "-4-
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that company.

By simple calculations from the previous subsection (using

ln v and ln ), we find that, given on ordering (1,2,...,n)

of the companies and the corresponding layering constants

C 2m 04 C2 ... 49 Cn 1
n+

- EBj(x-cj)+, (-1,2,...,n) (4.10)
i-i

with

0 (j < i)

kiSa i/k! 1 . (k d (4.11)
- /k 1  1 J-_

cti[( ~ ~ 1: i)) Mk

independent of the c

These piecewise-linear treaties are shown in Figure 3.

Of particular interest are the quota-share fractions ("stock

functions" [131), Bi(k) , showing the incremental participation

of company i in layer k:

0 W - dyi (x) k kl 0 (k < i) (4.12)

Ci / 1 J! aj (k> i)

In other words: in the exponential POREX , companies quota-share

in layers, with their quota-fraction equal to their unit risk

tolerance, divided by unit tolerances of all other companies

participating in that layer.
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S. The Fair, Pareto-optimal Risk Exchange (FAiRPOREX)

We turn now, to the heart of our contribution. The basic

difficulty of the POREX models is that they are indeterminate

and do not completely describe the "best" treaties. Rather, they

prescribe a subset of possible arrangements (which contains any

"reasonable" REX ), and leave the selection of the layering order

and constants as the basic issue in the competitive bargaining.

Botch has suggested the use of the Nash equilibrium point (2],

a market equilibrium mechanism using Arrow Certificates (31, (4],

and game theory (41 to resolve this problem, but none of these

is competely satisfactory.

As discussed in Section 3, we believe that mutual exchanges

among insurance companies are governed both by a desire to modify

short-term risk, and also by an understanding that, over the long

run, no single company shall profit from another in the sense of

modifying the premium of contributed and assumed losses. Therefore,

it in of interest to see if the FAIRREX requirement of Section 3

can be superposed on the POREXs of Section 4 to give one or

several risk exchanges that are both fair and Pareto-optimal.

First we observe that there are effectively n-I free

layering constants (c i (if we drop the ordering convention),

since one must be set to zero.

From the n FAIRREX requirements (3.2) we subtract one because

of the already satisfied conservation condition ZYi - EXi ,

leaving n-I effective constraints (3.2). Surprisingly, and

very satisfyingly, it turns out that this is enough to completely

specify a unique FAIRPOREX! Mathematically, this is seen as follows:

For any REX (X,Y) defined in (2.11), let

n Yi
*(X,Y) - Z E{G.J lnvity)dy} . (5.1)

imi

Define a FAIRREX as

EfGoyi(X)) - E(G.Xi} - q (I-1,2,...,n) (5.2)

where E{GX} - Eqi - q

tand define a FAIRPOREX as a FAIRREX that additionally
satisfies (4.7).
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I loa Suppose qi>0 and v (0) o0 for all i-11,2,...,n

Thent For any bounded X ,

(1) Among all FAIRREXB (X,Y) there is a FAIRREX (X i )

that minimizes 4 1

(2) The FAIRREX (X,i) is a FAIRPOREX ; (5.3)

(3) If at least one vj >0 over its range, then the

FAIRPOREX is unique.

The proof is based upon a similar result of Gale (9] who is

concerned with the fair distribution of desirable economic goods.

The proof, which relies on the convexity of 0 on the set of REXs

is rather delicate, and is developed in a separate paper [7].
There one finds also an extension in case X is not bounded.

The practical importance of this result is that a unique

POREX can be found which also is fair in the long run, i.e., one

can be both a "rational economic man" and a "rational actuary" in

setting up a risk exchange.

£L



6. FAIRPOREX Algorithms

6.1. General n Company Algorithm

In 4.3 we have seen that a POREX can be characterized

by its multiplier constants k- (k, k2 0 ...Ikn or equivalently
by its layering constants c - (ci,c2,...,cn). It is evident
that finding a FAIRPOREX is a root-finding procedure where one

tries to find either k or c such that for all i

U (c) - Premium~yi (XIS)] becomes equal to the input

premiums q, "Premium[Xi] (6.1)

or, equivalently, such that

vi(k) - Premium[yi(X/k)] becomes equal q, (6.2)

In the general n company case one works more easily with

the multiplier constants. The search is then helped by the following

observations:

(1) Because of the conservation condition E v.k) - E qi
for any k . So there is no problem of i i

"escaping values" and if one vi  ts too large at least

one other must be too small.

(2) If one increases ki , then vi(k) is nondecreasing (strictly

increasing) for i 0d j
is nonincreasing (strictly

decreasing) for i - j

The statements in parenthesis hold as soon as Y is not

identically zero.

Observe that these considerations do not depend on any ordering

of the constants k, J- 1,2,...,n

6.2. General Two-Company Algorithm

The search is particularly simple when n - 2 . Then, for
c2 3 0 , k2 + if and only if c2 + If we pick c$- (0,0)

initially, then it follows from the above that one vi(c o) is too

high, and the other is too low, and that Vi decreases (increases)

if its own (the other) layering constant increases. So the

algorithm is simply:

-A__
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(1) Set cO - (0,0) and compute the vi . Renumber, if

necessary, the company with ui > q> as company #2 ,

the other as company #1 .

(2) Keeping cI - 0 , increase c2 until U2 decreases to q2
(and u, increases to q1 )

6.3. Exponential Utility Algorithm

The computation of the fair layering constants is
greatly simplified in the exponential case because the slope of

Y(x) in layer k ,x c ckj ck+l) , remains constant at

61k)- ai/ (Ol+2+ +ak ) , and, in the top layer [cn'a) I
the nth company participates only in this layer; thus,

YnCx) Bn (n) (x-c n )

The key idea of the algorithm below is that the company which

actually takes on this upper layer will be the one with largest

resulting cn . Because Premium[ (X-c)+ ] is decreasing in c

this company can be found by finding the company i that minimizes

q /ai . Once this company is found (and renumbered fn ) , t..e losses
handled in the topmost layer are removed from the pool, and the
process repeated in the layer [cnl~c) , etc. Furthermore, the

rankings qi t)/Qi , once made, are stable in every iteration t
so the ordering of the companies can be fixed once and for all!

The algorithm also contains some short-cut stopping rules.

Exponential Utility Algorithm

1. Set t- n , and index the companies so that

q, q2 qn

(n)
Define ql ( q, = Premum[Xi I"

2. At iteration t , ct  is the unique solution of

q t =t M . (Promum (X- t )  Pr0 +um[1(x-c tl
(Note: n~l'm



- 17-

3. If c t a 0  (roundoff?) , STOP! c tc 2 " me't-1 a 0

4. Define

q t-..q M - otW . (Proemimwro-c,) - Premium((X-ct,)] .

(i- 1,2,...,t-1)

(Note: q(tl) .0 for it )

5. If q(t-l). 0 (roundoff?) for all i < t , STOP! There is

no probability mass below X-c t . and c1 C 2  ... ctlWc t

6. Set t0.t-1 . If t-1 , set c1 - 0 and STOP!

Otherwise, GOTO Step 2

An equivalent, and somewhat simpler algorithm is as follows:

Alternate Form

1. Set t- n , and index the companies so that:

q , L), 3 q

1 2 3 n

2. At iteration t , ct  is the unique solution of

+ n
qt - It(t){Premium[(X-ct)+ ]

- I qj}
t+ 1

3. If ct a0 (roundoff?), STOP , c1 c 2 0 ... actat 0

4. If the term in braces is zero for ct , STOP!

There is no probability mass below X-c t

and a, aC 2 m...c t- a c t

5. Set t.t-1 I If t- I* set c1 -0 and STOP!

Otherwise, GOTO Step 2

This algorithm has been implemented in APL for arbitrary p(x)

over Xe[0,1,2...h a copy of the program may be obtained

by writing the authors. A numeral example, computed according

to the first algorithm and using a Pareto distribution is given

in Appendix A

.MJ



- 18 -

7. Interpretations of 8oeoial Cases

With the rAIRPORIX model developed, it is of interest

to show how certain practical risk pools arise as special cases.

Some of these interpretations have been given previously by

Borch (21 and Gerber [10]. We shall emphasize the exponential

utility case.

The first observation is that with exponential utilities

we will have q,/*1 - q2/a2 - ... -qn/an when the *volume"

of each company is the same fraction of its unit risk tolerance.

In this case, it is easy to see that c 1 -c 2 - ... - cn - 0 , and

we have a quota claims pool (2.7) , with

ein =i/(al+Q2
. ...+Q n) - qi/(ql+q2+...+qn). All companies participate

in all losses, but the most risk-tolerant (highest premium) takes

the greatest shares this justifies (2.8). (Of course this result

is trivially true if all (general) utility functions are identical

and qaq 2  ... qn r s0 a nso.)

If companies have the same premiums q. , but differing air

then they will take higher layers, the larger their risk tolerance

is. If both q and at vary, then it is the ranking of qi/ai

that selects the layering order. It is difficult to give closed

formulae for the layers, but one can show that,

Premium( X-ct)] - Premium[(X-ct+ 1
+ ] = Zc±[ qt+1 (7.1)t+1 i at+ 11

so the larger at+ 1 , the wider the tth layer, [c tct+i).

As the an of one company becomes very large compared to

the risk tolerance of other companies, it is clear that it will

take up the uppermost layer, and take a larger and larger share

of it, reaching finally Y n-1 . (X-Cn) + , with Premium( (X-cn)+] - qn"
This is, of course, a (full) stop loss cover, with this company

acting like a reinsurer. However, we shall see in the next section

that such a company might not be interested in participating this

pool on fair terms.

The opposite case is a highly risk-adverse company, with a

very sall. In the limit a it takes all the losses in (O,c l ) ,

laving (X-C 1 ) to the other companies.
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If there are many companies participating, then,

of course, there are many layers. However, in practice similar
companies (with comparable qi/ai ) could probably share the

same layers, and lower-level companies could probably be

involved in only a few layers (rather than continuing to the end
with very small Bi(j)), without seriously violating both

Pareto-optimality and fairness. This would greatly simplify

the administration of the pool. On the other hand our model

sems to explain the many practical interlocking hierarchies

of pools of different sized carriers.

--1I . .
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a. The Desirability of FAIRPOREX

By merging its original loss Xi with the pool, company ±

accepts a new loss Y iw Y(X) , where utility is the "best

possible" in the Pareto-optimal sense, i.e. for the great

coalition of all companies. Also for all values of X , the

treaty terms have been adjusted so that the premiums of all

companies are unchanged in the long run. But, is it, in the

individual sense, always advantageous to join a FAIRPOREX ?

Unfortunately, the answer is, no.

If we re-examine our development, we see that nowhere was

the range of our Pareto-optimal fraction restricted to

guarantee that Vii - Efv± (Y ))4VjEfvi(Xi)} for each participant;

in fact, there is no reference to the original marginal distribution

(except for the means q ) and the distribution of the pooled

losses X is used only to set the layering constants. The strict

requirement of fairness may select a Pareto-optimal solution

which has V > V for some company, who would then prefer to
i

"go it alone*. Typically this happens to the larger, risk-

tolerant company, who is asked to team up with a smaller,

risk-averse company. This forces the larger company to take

the tail of the total losses, which may appear worse than not

joining the pool.

Figure 4 shows the result of several computer analysis for

two companies with exponential disutilities; a 1 is fixed at

10 units, and a2 varies parametrically from 2 to 30 units.

The distributions of X1 and X2 are geometric over the

integers, with mans q1 - q2 - 20 units ; X1 and X2 are assumed

independent, so the distribution of X is negative binomial.

Thus for a2 
< 10 , company #1 takes the upper layer, with

the values of cI shown; for a2 >10 , company #2 takes

the upper layer, with the values of c2 shown. (ci on right-

hand scale).

Expected disutilities are expressed in terms of certainty

equivalents:

vi(cE) - E(vi(y(x)} ; vi(CEi) -E(vi(xi} ; (8.1)
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or, in the case of exponential disutilities:

CEiM LilnE(exp(yix)/ )} ; CEO - ailnE{exp(Xil/ai)). (8.2)

Without a pool, CEI - CE! - 34.14 , i.e. then original random

losses are equivalent toa determinstic loss of 34.14 units.

In a pool with m 2m 110 , the certainty equivalents

drop to CE1 m CE2 a 24.57 , a large improvement for both

companies. Now, let a2 decrease, i.e. let company #2 become

more risk-averse. Figure 4 shows that CEI begins to increase

as it is forced to take a larger fraction of a higher layer;

finally, at about a2 -4 , CE1 - CEI , and company #I

decides the FAIRPOREX is not worth it.

Conversely, if company #2 becomes more risk tolerant,

then CEI decreases somewhat from 24.57 as a2 increases,

until finally at about a20 28 , company #2 decides to leave

the pool. (Calculations not shown.)

This change in the desirability of a FAIRPOREX can lead

to interesting questions of coalition stability with three or

more companies. For example, let companies A,B,C, each have

geometric losses with qAm qB3 qc" 10 , and exponential utilities

LA - 3 , %B a 10 , and a- 20 . Initially, CEO - 20.53 , CEB - 13.71,

and CEO a 11.77.

Now, through the use of the algorithm, one can show that

company A is not acceptable to B , and certainly not

acceptable to C in a two-party agreement. B and C are
compatible, however, and it turns out that: cB=-0 , c-5.19
CEB M 10.84 , CECM 11. 48 ; when they share the sum of two random

geometric losses.

And surprisingly, the three-party exchange is also satisfactory

to all parties concerned since: cA-0 ; ca-7.07 ; c -14.10

CE A 10.38 ; CEB m 11.08 ; CEC - 11.72 ; when sharing the sum of

three random geometric losses.

S
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Note that the *outcast" A gained the most over his

initial independent position in the triad, and that B and C

were forced to give up some gains from their diad, although

they are still better off than going it alone. This suggests

that a weak partner should always try to get in at the

beginning of the negotiations, and prevent his stronger partners

from computing what they can do without him!

We have been unable to form a stable triad from among

companies who did not wish to form any diads among themselves.
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9. The Possibility of Side Payments

If a FAIRPOREX will not form because of inequities in the

sizes of the participants, or because some company feels that

it profits insufficiently, a possible generalization of our

model is to introduce fixed side payments wi, such that

company i actually pays r i + y(X) , with Eri - 0 and with
yi(X) as before. For an exponential utility, this has the

quick comparison advantage of increasing the certainty equivalent

by w . In many cases there is a range of side payments

that will bring recalcitrant members back into the exchange,

and still leave an improvement in utility for everyone.

For instance, in the example above, A could give 0.24

units to B and 0.24 units to C to induce them to form
a triad, and still have a certainty equivalent left of

CE A10.38 +0.48 - 10.82 , well below being left out at

CEO -20.53 . In fact, he has 20.53- 10.82 - 9.71 more units of
A

side payment left to "sweeten the pot" if B and C prove

stubborn.

Of course, by introcuding side payments we abandon the

basic idea of fairness. If you want so, this is where the

snail bites in its own tail. We started by constructing fair

risk exchanges and now we modify them to become unfair again!

This just proves that - in our model as in the real world -

fair pools will not always form!

I

- . .
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Appendix & a)

Numerical Example (Exponential disutilities)

1. We demonstrate the calculation of

the unconstrained FAIRPOREX (business pool),

the constrained FAIRPOREX (claims pool),

for a total input variable X-Z-1 where Z has density

fsCx) * 2x 3 , (x 1),

(Z -Pareto on (1,-) with

parameter 3 to guarantee

a finite mean E[Z]- 2

We also define Premium[Y]- ElY] for any random variable Y

2. For the unconstrained FAIRPOREX we have Este (4.6)]a 
i

yi(x) - -t- x + Y, where yi is computed from

E a the fairness condition
i E[YI] qi -> Yi qi -i "

3. For the constrained FAIRPOREX we compute according to the

"Exponential Utility Algorithm" (first version) as explained

in 6.3.

The FAIRPOREX is computed for five companies with given

ai and q, t

1 0, q(5) B (5) q (4) (4) q( 3 ) B3) q(2) (2) q () 0 (1)

5 100 .3 0.585 -

4 50 .2 0.292 0.050 0.704 -

3 15 .2 0.088 0.155 0.211 0.140 0.714 -

2 5 .2 0.029 0.185 0.071 0.180 0.238 0.133 0.833 -

I 1 .1 0.006 0.097 0.014 0.096 0.048 0.087 0.167 0.06 1

C5 - 0.95 C4  0 .71 C3 0.28 C2 0.063 C1 -0.0007

q



Vote that in our example b)

Premium( (X-ct ) - 1
t

qCt)
(t) (W _ __ .t.q~) t t +1 t+i+1 " t+-" tt+ j --+1

and for i4 t-I

qt-) q (t) _ "

Sct + t+1

The computation of c1  serves for checking, of course we must

have c1 - 0 .

4. The results can be rearranged in the following final form:

Business pool

company claims quota fixed payment + ee

5 58.5 -2P.5%

4 29.2% - 9.2%

3 8.8% +11.21

2 2.9% +17.1%

1 0.6* + 9.41

Claims Pool

company layer S layer 4 layer 3 layer 2 layer 1

5 58.50 - - - -

4 29.2% 70.4% - - -

3 8.8% 21.1% 71.41 - -

2 2.91 7.11 23.8% 83.31 -

1 0.6% 1.41 4.81 16.71 100%

layer
interval (.95,-) 1.71,.95) [.28,.71) 1.063,.28) [0,.063)
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Figure 1. Development of a Constrained POREX for Given Pareto
Multipliers, ki.
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Figure 3. POREX Treaties with Exponential Utilities.
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Figure 4. Numerical Example with X,9 X2 Geometrically Distributed, ql*q 2-20, and

Exponential Utilities, Showing Layer Values and Certainty Equivalent for Company'l.


